On exact category of $(m, n)$-ary hypermodules

نویسندگان

  • Najmeh Jafarzadeh Department of Mathematics, Payamenoor University,P.O. Box 19395-3697, Tehran, Iran.
  • Reza Ameri Mathematics, School of Mathematics, Statistics and Computer Science, University of Tehran
چکیده مقاله:

We introduce and study category of $(m, n)$-ary hypermodules as a generalization of the category of $(m, n)$-modules as well as the category of classical modules. Also, we study various kinds of morphisms. Especially, we characterize monomorphisms and epimorphisms in this category. We will proceed to study the fundamental relation on $(m, n)$-hypermodules, as an important tool in the study of algebraic hyperstructures and prove that this relation is really functorial, that is, we introduce the fundamental functor from the category of $(m, n)$-hypermodules to the category $(m, n)$-modules and prove that it preserves monomorphisms. Finally, we prove that the category of $(m, n)$-hypermodules is an exact category, and, hence, it generalizes the classical case.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Canonical (m,n)−ary hypermodules over Krasner (m,n)−ary hyperrings

The aim of this research work is to define and characterize a new class of n-ary multialgebra that may be called canonical (m, n)&minus hypermodules. These are a generalization of canonical n-ary hypergroups, that is a generalization of hypermodules in the sense of canonical and a subclasses of (m, n)&minusary hypermodules. In addition, three isomorphism theorems of module theory and canonical ...

متن کامل

Exact category of hypermodules

The theory of hyperstructures has been introduced byMarty in 1934 during the 8th Congress of the Scandinavian Mathematicians [4]. Marty introduced the notion of a hypergroup and since then many researchers have worked on this new topic of modern algebra and developed it. The notion of a hyperfield and a hyperring was studied first by Krasner [2] and then some authors followed him, for example, ...

متن کامل

STRONGLY TRANSITIVE GEOMETRIC SPACES ASSOCIATED WITH (m,n)-ARY HYPERMODULES

In this paper, we define the strongly compatible relation ε on the (m,n)ary hypermodule M, so that the quotient (M/ε∗, h/ε∗) is an (m,n)-ary module over the fundamental (m,n)-ary ring (R/Γ∗, f/Γ∗, g/Γ∗). Also, we determine a family P (M) of subsets of an (m,n)-ary hypermodule M and we give a sufficient condition such that the geometric space (M,P (M)) is strongly transitive. Mathematics Subject...

متن کامل

The Number of m-ary Search Trees on n Keys

24 Let h(x) := log 2 x x ?2 log(x + 1) expff(x)g = x log 2 ? 2 log x + log log(x + 1) + f(x); it suuces to show that h(x) > 0 for x 5. Now h(5) : = 0:20 > 0 and h 0 (x) = log 2 ? 2x ?1 + 1 (x + 1) log(x + 1) + (x ? 1) ?2 log x > 1 (x + 1) log(x + 1) + (x ? 1) ?2 log x > 0 for x 5. Thus h(x) > 0 for x 5. This follows from calculus, since the last expression is strictly increasing in real m > 1.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 12  شماره 1

صفحات  69- 88

تاریخ انتشار 2020-01-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023